首页> 外文OA文献 >Reducing training requirements through evolutionary based dimension reduction and subject transfer
【2h】

Reducing training requirements through evolutionary based dimension reduction and subject transfer

机译:通过基于进化的维度减少培训需求   减少和主题转移

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Training Brain Computer Interface (BCI) systems to understand the intentionof a subject through Electroencephalogram (EEG) data currently requiresmultiple training sessions with a subject in order to develop the necessaryexpertise to distinguish signals for different tasks. Conventionally the taskof training the subject is done by introducing a training and calibration stageduring which some feedback is presented to the subject. This training sessioncan take several hours which is not appropriate for on-line EEG-based BCIsystems. An alternative approach is to use previous recording sessions of thesame person or some other subjects that performed the same tasks (subjecttransfer) for training the classifiers. The main aim of this study is togenerate a methodology that allows the use of data from other subjects whilereducing the dimensions of the data. The study investigates severalpossibilities for reducing the necessary training and calibration period insubjects and the classifiers and addresses the impact of i) evolutionarysubject transfer and ii) adapting previously trained methods (retraining) usingother subjects data. Our results suggest reduction to 40% of target subjectdata is sufficient for training the classifier. Our results also indicate thesuperiority of the approaches that incorporated evolutionary subject transferand highlights the feasibility of adapting a system trained on other subjects.
机译:训练脑计算机接口(BCI)系统以通过脑电图(EEG)数据了解受试者的意图目前需要与受试者进行多次训练,以开发必要的专业知识来区分不同任务的信号。常规地,通过引入训练和校准阶段来完成训练对象的任务,在训练和校准阶段中向对象提供一些反馈。此培训课程可能要花费几个小时,这不适用于基于在线EEG的BCI系统。一种替代方法是使用执行相同任务(主题转移)的同一个人或其他一些主题的先前记录会话来训练分类器。这项研究的主要目的是生成一种方法,该方法可以在减少数据量的同时使用其他主题的数据。该研究调查了减少必要的受试者和分类器的训练和校准期的几种可能性,并探讨了i)进化受试者转移和ii)使用其他受试者数据适应先前训练的方法(再训练)的影响。我们的结果表明,减少到40%的目标主题数据足以训练分类器。我们的研究结果还表明了结合进化学科转移的方法的优越性,并强调了采用其他学科训练的系统的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号